Part Number Hot Search : 
BH93471J FLD3F7CZ 58120 SP2538 1N5246 4R7M10 NE06L 90TFIR10
Product Description
Full Text Search
 

To Download 6MBP150RTJ060 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SPECIFICATION
Device Name Type Name Spec. No. :
: :
IGBT - IPM 6MBP150RTJ060 MS6M 0677
Fuji Electric Co.,Ltd. Matsumoto Factory
J n 2 ` N.Matsuda a. 9 0 3 J n 2 ` Nishiura a. 9 0 3 J n-9- 3 K.Yamada a. ` 20 T.Fujihira
MS6M 0677
1 22
H04-004-07
a
Revised Records
Date Classification Ind. Content Applied date Issued date Drawn Checked
A.Nishiura K.Yamada
Approved
J n-9'3 a. 20
enactment
N.Matsuda
T.Fujihira
Ma. 9' y1 - 3 Revision -0
a
Reliability Test Items
N.Matsuda
T.Miyasaka K.Yamada
T.Fujihira
MS6M 0677
2 22
H04-004-06
a
a 1. Package Outline Drawings
Package type : P621
1 3 .8 0.3
3 . 2 2 0.3
1 09 95
1 0.3
6 6 .4 4
1 0 0.2 10 6 0.15 6 0.15
0.2
1 0 0.2 1 2 0.25 6 0.15 2 0.1
4 - 5 .5
2 0.3
1
B
7 4 0.3
1
88
20
P
20
10
N
0.5 17
W
V
U
0.5
24
26
26 1 9 - 0 .5 2- 2.5
6-M5
7 9 22
+1.0 -0.3
22
17
12.5
+1.0 -0.3
8 -0.2
+1.0
Lot No.
Indication of Lot No. Odered No. in monthly Manufactured month (Jan.Sep.:19,Oct.:O,Nov.:N,Dec.:D) Last digit of manufactured year
2 0.1 3.22 0.3 2 2.5
2 0.1 2 0.1
(11.5)
(12)
0.5
4.5
0.3
1
8
10
0.1 max
22
Details of control terminals
Dimensions in mm
17
3 1-0.3
+0.6
MS6M 0677
3 22
H04-004-03
a
2. Pin Descriptions Main circuit Symbol P U V W N B Description Positive input supply voltage. Output (U). Output (V). Output (W). Negative input supply voltage. No contact.
Control circuit No
1 2 3 4
Symbol
Description
GNDU High side ground (U). ALMU Alarm signal output (U). VinU VccU Logic input for IGBT gate drive (U). High side supply voltage (U).
5 6 7 8
GNDV High side ground (V). ALMV Alarm signal output (V). VinV VccV Logic input for IGBT gate drive (V). High side supply voltage (V).
9 10 11 12
GNDW High side ground (W). ALMW Alarm signal output (W). VinW VccW Logic input for IGBT gate drive (W). High side supply voltage (W).
13 14 15 16 17 18 19
GND Vcc
Low side ground. Low side supply voltage.
VinDB No contact. VinX VinY VinZ ALM Logic input for IGBT gate drive (X). Logic input for IGBT gate drive (Y). Logic input for IGBT gate drive (Z). Low side alarm signal output.
MS6M 0677
4 22
H04-004-03
a
3. Block Diagram
P VccU VinU
4 3
ALMU 2 RALM 1.5k GNDU 1 VccV VinV
8 7
Pre - Driver Vz U
ALMV 6 RALM 1.5k GNDV 5 VccW VinW ALMW
12
Pre- Driver Vz V
11 10
Pre- Driver RALM 1.5k Vz W
GNDW 9
Vcc VinX
14
16
Pre- Driver Vz GND
13
VinY
17
Pre- Driver Vz
VinZ
18
Pre- Driver Vz NC VinDB B
15
N
ALM
19
Over heating protection circuit
RALM 1.5k
Pre-drivers include following functions 1.Amplifier for driver 2.Short circuit protection 3.Under voltage lockout circuit 4.Over current protection 5.IGBT chip over heating protection
a
MS6M 0677
5 22
H04-004-03
4. Absolute Maximum Ratings Tc=25C unless otherwise specified. Items Bus Voltage (between terminal P and N) Collector-Emitter Voltage *1 DC
Inverter
Symbol DC Surge Short operating VDC VDC(surge) Vsc Vces Ic Icp -Ic Pc Vcc Vin Iin VALM ALM Tj Topr Tstg Viso 1ms Duty=68.2% *2
Min. 0 0 200 0 -0.5 -0.5 -0.5 -20 -40 -
Max. 450 500 400 600 150 300 150 431 20 Vcc+0.5 3 Vcc 20 150 100 125 AC2500 3.5
Units V V V V A A A W V V mA V mA C C C V Nm
Collector Current
Collector Power Dissipation One transistor *3
Supply Voltage of Pre-Driver *4 Input Signal Voltage *5 Input Signal Current Alarm Signal Voltage *6 Alarm Signal Current *7 Junction Temperature Operating Case Temperature Storage Temperature Isolating Voltage (Terminal to base, 50/60Hz sine wave 1min.) Screw Torque Terminal (M5) Mounting (M5)
Note *1 : Vces shall be applied to the input voltage between terminal P and U or or W, N and U or V or W . *2 : 125C/FWD Rth(j-c)/(IcxVF MAX)=125/0.47/(150x2.6)x100=68.2% *3 : Pc=125C/IGBT Rth(j-c)=125/0.29=431W [Inverter] *4 : VCC shall be applied to the input voltage between terminal No.4 and 1, 8 and 5, 12 and 9, 14 and 13. *5 : V shall be applied to the input voltage between terminal No.3 and 1, 7 and 5, 11 and 9, 16,17,18 and 13. *6 : shall be applied to the voltage between terminal No.2 and 1, No6 and 5, No10 and 9, No.19 and 13. *7 : shall be applied to the input current to terminal No.2,6,10 and 19.
MS6M 0677
6 22
H04-004-03
a
5. Electrical Characteristics Tj=25C, Vcc=15V unless otherwise specified. 5.1 Main circuit Item Collector Current at off signal input Symbol ICES Conditions =600V Vin terminal open. I =150A Terminal Chip -I =150A Terminal Chip Turn-on time Turn-off time Reverse recovery time ton toff trr VDC=300V, Tj=125C Ic=150A Fig.1, Fig.6 VDC=300V IF=150A Fig.1, Fig.6 internal wiring Maximum AvalancheEnergy (A non-repetition) PAV inductance=50nH Main circuit wiring inductance=54nH 5.2 Control circuit Item Supply current of P-side pre-driver (one unit) Supply current of N-side pre-driver Input signal threshold voltage Input Zener Voltage Vin(th) Vz ON OFF Rin=20k Tc=-20C Alarm Signal Hold Time tALM Tc=25C Tc=125C Current Limit Resistor Fig.2 Fig.2 Fig.2 Symbol Iccp Iccn Conditions Switching Frequency : 0~15kHz Tc=-20~125C Fig.7 Min. Typ. Max. 18 Units mA 170 mJ 1.2 1.8 1.6 2.3 2.6 3.6 0.3 s V V Min. Typ. Max. 1.0 Units mA
Inverter
Collector-Emitter saturation voltage Forward voltage of FWD
VCE(sat)
VF
1.00 1.25 1.1 1425
1.35 1.60 8.0 2.0 1500
65 1.70 1.95 4.0 1575
mA
V V
ms
RALM Alarm terminal
a
MS6M 0677
7 22
H04-004-03
5.3 Protection Section (Vcc=15V) Item Over Current Protection Level of Inverter circuit Over Current Protection Delay time SC Protection Delay time IGBT Chips Over Heating Protection Temperature Level Over Heating Protection Hysteresis Over Heating Protection Protection Temperature Level Over Heating Protection Hysteresis Under Voltage Protection Level Under Voltage Protection Hysteresis 6. Thermal Characteristics (Tc=25C) Item Junction to Case Thermal Resistance *8 Inverter IGBT FWD Symbol Rth(j-c) Rth(j-c) Rth(c-f) Min. Typ. 0.05 Max. 0.29 0.47 Units C/W TcH VUV VH TjH TcOH VDC=0V, Ic=0A Case Temperature 11.0 0.2 20 0.5 12.5 C V tdoc tsc TjOH Tj=125C Tj=125C Fig.4 Surface of IGBT Chips 110 20 125 C C 150 5 8 s s C Symbol Ioc Conditions Tj=125C Min. 225 Typ. Max. Units A
Case to Fin Thermal Resistance with Compound *8 : ( For 1device , Case is under the device ) 7. Noise Immunity Item Common mode rectangular noise Common mode lightning surge (Vdc=300V, Vcc=15V, Test Circuit Fig 5.) Conditions
Min. 2.0
Typ. -
Max. -
Units kV
Pulse width 1us,polarity ,10 minuets Judge : no over-current, no miss operating
Rise time 1.2us,Fall time 50 Interval 20s,10 times s
5.0
-
-
kV
Judge : no over-current, no miss operating
8. Recommended Operating Conditions Item DC Bus Voltage Power Supply Voltage of Pre-Driver Screw Torque (M5) 9. Weight Item Weight Symbol Wt Min. Typ. 450 Max. Units g Symbol VDC Vcc Min. 13.5 2.5 Typ. 15.0 Max. 400 16.5 3.0 Units V V Nm
a
MS6M 0677
8 22
H04-004-03



Figure 1. Switching Time Waveform Definitions
1 ff
/Vin Vge (Inside IPM) Fault (Inside IPM) /ALM
off on Gate On Gate Off on
off
normal alarm tALMMax. tALMMax. tALM 2ms(typ.)
FaultOver-current,Over-heat or Under-voltage
Figure 2. Input/Output Timing Diagram
Necessary conditions for alarm reset (refer to to in figure2.) This represents the case when a failure-causing Fault lasts for a period more than tALM. The alarm resets when the input Vin is OFF and the Fault has disappeared. This represents the case when the ON condition of the input Vin lasts for a period more than tALM. The alarm resets when the Vin turns OFF under no Fault conditions. This represents the case when the Fault disappears and the Vin turns OFF within tALM. The alarm resets after lasting for a period of the specified time tALM.
/Vin off on Ioc on
Ic
/ALM
tdoc
alarm tdoc
Figure 3. Over-current Protection Timing Diagram
Period :
When a collector current over the OC level flows and the OFF command is input within a period less than the trip delay time tdoc, the current is hard-interrupted and no alarm is output.
Period :
When a collector current over the OC level flows for a period more than the trip delay time tdoc, the current is soft-interrupted. If this is detected at the lower arm IGBTs, an alarm is output.
MS6M 0677
9 22
H04-004-03
a
tSC
Ic IALM
Ic
Ic
IALM
IALM
Figure.4 Definition of tsc
CT
VccU DC 15V
SW1 20k
P IPM
VinU
U
AC200V
GNDU Vcc DC 15V
SW2 20k
V
+
VinX
W
4700p Noise
GND Earth
N
Cooling Fin
Figure 5. Noise Test Circuit
Vcc DC 15V
HCPL4504
P IPM L + DC 300V
20k
Vin
GND
N
Ic
Figure 6. Switching Characteristics Test Circuit
Icc
A
Vcc IPM
P U V W
DC 15V
P.G +8V fsw
Vin
GND
N
Figure 7. Icc Test Circuit
MS6M 0677
10 22
H04-004-03
a
10. Truth table 10.1 IGBT Control The following table shows the IGBT ON/OFF status with respect to the input signal Vin. T eI B tr-nw e Vnia "o "e e u d r oa r c n i n h G T uno h n i s tL w l l n e n l m o d i . v a t o
Input (Vin) Low High Output (IGBT) ON OFF
10.2 Fault Detection (1) When a fault is detected at the high side, only the detected arm stops its output. A ta t teIM d s n a y l m. th ti h P o e ' n a r me t a (2) When a fault is detected at the low side, all the lower arms stop their outputs and the IPM outputs an alarm of the low side.
Fault OC High side Uphase UV TjOH OC High side Vphase UV TjOH OC High side Wphase UV TjOH OC Low side UV TjOH Case Temperature TcOH IGBT U-phase V-phase W-phase Low side OFF OFF OFF * * * * * * * * * * * * * OFF OFF OFF * * * * * * * * * * * * * OFF OFF OFF * * * * * * * * * * * * * OFF OFF OFF OFF ALM-U L L L H H H H H H H H H H Alarm Output ALM-V H H H L L L H H H H H H H ALM-W H H H H H H L L L H H H H ALM H H H H H H H H H L L L L
*Depend on input logic.
MS6M 0677
11 22
H04-004-03
a
11. Cautions for design and application 1. Trace routing layout should be designed with particular attention to least stray capacity between the primary and secondary sides of optical isolators by minimizing the wiring length between the optical isolators and the IPM input terminals as possible.

2. Mount a capacitor between Vcc and GND of each high-speed optical isolator as close to as possible.
Vcc-GND
3. For the high-speed optical isolator, use high-CMR type one with tpHL, tpLH 0.8s.
tpHL,tpLH0.8usCMR
4. For the alarm output circuit, use low-speed type optical isolators with CTR 100%.
CTR100%
5. For the control power Vcc, use four power supplies isolated each. And they should be designed to reduce the voltage variations.
Vcc
6. Suppress surge voltages as possible by reducing the inductance between the DC bus P and N, and connecting some capacitors between the P and N terminals.
P-NP-N
7. To prevent noise intrusion from the AC lines, connect a capacitor of some 4700pF between the three-phase lines each and the ground.
AC
8. At the external circuit, never connect the control terminal GNDU to the main terminal U-phase, GNDV to V-phase, GNDW to W-phase, and GND to N-phase. Otherwise, malfunctions may be caused. VVWW N 9. T k n t ta a o ta i l o'rs o s t tepi r i u s n l e o s l a e oe h t n pi l o tr e p n e o h r yn t i a b c me s w c sa s ma p g o if a capacitor is connected between the input terminal and GND.
-GND
a
MS6M 0677
12 22
H04-004-03
10. T k gteu e i l o'C Ri oa c u td s nwt as fc n ao a c t d c e a i h s d s a r T n co n, e i i n ots t g h ufi t lw n e o e i ie l d the primary forward current of the optical isolator.
CTR
11. Apply thermal compound to the surfaces between the IPM and its heat sink to reduce the thermal contact resistance.
12. Finish the heat sink surface within roughness of 10m and flatness (camber) between screw positions of 0 to +100m. If the flatness is minus, the heat radiation becomes worse due to a gap between the heat sink and the IPM. And, if the flatness is over +100m, there is a danger that the IPM copper base may be deformed and this may cause a dielectric breakdown.
10um 0100um IPM 100um
Mounting holes Heat sink +100m 0
13. This product is designed on the assumption that it applies to an inverter use. Sufficient examination is required when applying to a converter use. Please contact Fuji Electric Co.,Ltd if you would like to applying to converter use.

14. Please see the Fuji IGBT-IPM R SERIES APPLICATION MANUAL and Fuji IGBT MODULES N SERIES APPLICATION MANUAL.
IGBT-IPM R IGBT N
MS6M 0677
13 22
H04-004-03
a
12. Example of applied circuit
20 k IF Vc c 0 .1 u F +1 0 uF 5V 1k 20 k IF Vc c 0 .1 u F +1 0 uF 5V 1k 20k IF Vc c 0 .1 u F +1 0 uF 5V 1k Vc c IF 2 0k 0 .1 u F 0 1 uF B N U V W
+
P
A C2 00 V
IPM
IF
2 0 k 0 .1 u F
0 1
uF
IF
2 0 k 0 .1 u F
0 1
uF
5V
1k
The alarm signal should be connected to Vcc when it it is not used. Vcc
13. Package and Marking Please see the MT6M4140 which is packing specification of P610 & P611 & P621 package 14. Cautions for storage and transportation Store the modules at the normal temperature and humidity (5 to 35C, 45 to 75%).
(5354575%)
Avoid a sudden change in ambient temperature to prevent condensation on the module surfaces.
Avoid places where corrosive gas generates or much dust exists.
Store the module terminals under unprocessed conditions
.
Avoid physical shock or falls during the transportation.
15. Scope of application This specification is applied to the IGBT-IPM (type: 6MBP150RTJ060). IGBT-IPM (6MBP150RTJ060) 16. Based safety standards UL1557
MS6M 0677
14 22
H04-004-03
a
17.Characteristics 17-1.Control Circuit Characteristics(Respresentative)
P ower sup ply current vs. Switching frequency Tc=1 25C
70
Pow er su p pl y c u rre nt : Icc (mA)
Input signal thresh old voltage vs. P ower sup ply voltag e
2.5
Inp u t s ig na l thresho ld voltag e : Vin(on ),Vin (off) (V)
Tj=25C Tj= 125C
60 50 40 30 20 10 0 0
P-side N-side
Vcc=17V Vcc= 15V Vcc=13V
2
} Vin(off)
1.5
} Vin(on)
1
Vcc= 17V Vcc= 15V Vcc= 13V
0.5
0 5 10 15 20 Switching frequency : fs w (k Hz) 25 12 13 14 15 16 17 Power supply voltag e : Vcc (V) 18
Under voltage vs. Junc tion temp erature
14 12
Un d er voltag e : VUVT (V) Un de r voltage h ys te ris is : VH (V)
Under voltage hysterisis vs. Jnction tem perature 1
0.8
10 8 6 4 2 0 20
0.6
0.4
0.2
0 40 60 80 100 120 140 20 Ju nc tion temperatu re : Tj (C) 40 60 80 100 120 Ju nc tion temperatu re : Tj (C) 140
Alarm hold tim e vs. P ower sup ply voltag e
3
Alarm h old time : tALM (m Se c) O ver h ea tin g protec tio n :TcO H , TjO H ( C) O H hy sterisis :Tc H, TjH (C )
Over heatin g characteristics TcO H,TjO H,TcH,TjH vs. Vc c
200 TjO H 150 TcO H 100
2.5 Tc= 100 C 2 Tc=25C 1.5 1 0.5 0 12 13 14 15 16 17 18 Power supply voltag e : Vcc (V)
50 TcH,TjH 0 12 13 14 15 16 17 18 Power supply voltag e : Vcc (V)
MS6M 0677
15 22
H04-004-03
a
17-2.Main Circuit Characteristics (Representative)
Collector curren t vs . Collec tor-Em itter voltag e Tj=25 C(Chip)
240 200 160 120 80 40 0 0 0.5 1 1.5 2 2.5 3 3.5 Collector-Em itter voltage : Vce (V) Vcc=15V Vcc= 17V
Collector Cu rren t : Ic (A)
Collector current vs . Collec tor-Em itter voltage Tj=25C(Term inal)
240 200 160 120 80 40 0 0 0.5 1 1.5 2 2.5 3 3.5 Collector-Em itter voltage : Vce (V) Vcc= 15V Vcc=17V
Collector Cu rre nt : Ic (A)
Vc c= 13V
Vc c= 13V
Collector current vs . Collec tor-Em itter voltage Tj=125 C(Chip)
240 200 160 120 80 40 0 0 0.5 1 1.5 2 2.5 3 3.5 Collector-Em itter voltage : Vce (V) Vc c=15V Vcc=17V
Col lecto r Cu rrent : Ic (A)
Collector curren t vs . Collec tor-Em itter voltage Tj=125 C(Term inal)
240 200 Vcc= 13V 160 120 80 40 0 0 0.5 1 1.5 2 2.5 3 3.5 Collector-Em itter voltage : Vce (V) Vcc=15V Vcc=17V
Collector Cu rren t : Ic (A)
Vc c= 13V
Forward current vs. Forward voltage (Chip)
300 250
Forward Cu rrent : If (A)
Forward current vs. Forward voltag e (Term inal)
300 250
125 C 200 150 100 50 0 0 0.5 1 1.5 2 2.5 Forw ard vol tage : Vf (V) 25C
Fo rw ard Cu rren t : If (A)
125C 200 150 100 50 0 0 0.5 1 1.5 2
25C
2.5
Forw ard vol tage : Vf (V)
MS6M 0677
16 22
H04-004-03
a
Switching Loss vs. Collector Current Edc =30 0V,Vcc =15 V,Tj=25C
Switch in g loss : Eo n,Eo ff ,Err (m J/cy cle)
Switching Loss vs. Collector Current Edc=300V,V cc=15V,Tj=1 25C
Switch in g loss : Eo n ,Eoff,Err (m J/cycle)
16 14 Eon 12 10 8 6 Eoff 4 2 0 0 60 120 180 E rr 240
25 Eon 20
15
10 Eoff 5 E rr 0 0 60 120 180 240
Coll ec tor current : Ic (A)
Collec tor current : Ic (A)
Reversed b iased safe operating area Vcc=1 5V,Tj 125C
Th erma l resis ta nc e : R th (j-c) (C /W )
Transient therm al resistance
400
1 FWD
Col lector cu rren t : Ic (A)
300
IGB T 0.1
200 RBS OA(Repetitive pulse)
100
0 0 100 200 300 400 500 600 700
0.01 0.001 0.01 0.1 1
Collector-Em itter voltag e : Vce (V)
Pu lse width :Pw (sec)
Power d eratin g for IG BT (per device)
500
Colle cter Power D issip ation : P c (W ) Colle cter Power D issip ation : P c (W )
Power derating for FW D (per device)
300 250 200 150 100 50 0
400
300
200
100
0 0 20 40 60 80 100 120 140 160 Case Tem p erature : Tc (C)
0
20
40
60
80
100
120 140 160
Case Tem perature : Tc (C)
MS6M 0677
17 22
H04-004-03
a
Switching tim e vs. Collec tor current Edc =30 0V,Vcc=15 V,Tj=25C
10000
Switch in g tim e : ton ,toff,tf (n Sec)
Switching tim e vs. Collec tor current Edc=300 V,V cc=15V,Tj=1 25C
10000
Switch in g tim e : ton ,toff,tf (n Sec)
ton toff
ton toff 1000
1000
100 tf
100 tf
10 0 50 100 150 200 Col lector cu rrent : Ic (A) 250
10 0 50 100 150 200 250 Col lector cu rrent : Ic (A)
Revers e recovery characteris tic s trr,Irr vs.IF
trr125C
R eve rse rec overy cu rre n t:Irr(A) Reverse recovery time:trr(n sec)
100
trr25 C Irr125C Irr25 C
10
1 0 50 100 150 200 250 Forw ard cu rren t:IF(A)
MS6M 0677
18 22
H04-004-03
a
a
18. Reliability Test Items
Test categories Reference norms EIAJ ED-4701
Test Method 401 Method Test Method 402 method Test Method 403 Condition code B
Test items
Test methods and conditions
AcceptNumber ance of sample number 5 (1:0)
1 Terminal strength (Pull test) 2 Mounting Strength 3 Vibration
Pull force
: 40 N (main terminal) 10 N (control terminal) 10 1 sec. 2.5 ~ 3.5 Nm (M5) 10 1 sec. 10500 Hz 15 min.
Test time : Screw torque : Test time : Range of frequency : Sweeping time : Acceleration : 100 m/s2 Sweeping direction : Each X,Y,Z axis Test time : 6 hr. (2hr./direction) 4 Shock Maximum acceleration : 5000 m/s2 Pulse width 1.0 ms Direction : Each X,Y,Z axis Test time : 3 times/direction 5 Solderabitlity Solder temp. : 235 5 Immersion duration : 5.0 0.5 sec. Test time : 1 time Each terminal should be Immersed in solder within 1~1.5mm from the body. 6 Resistance to Solder temp. : 260 5 soldering heat Immersion time : 10 1sec. Test time : 1 time Each terminal should be Immersed in solder within 1~1.5mm from the body. 1 High temperature Storage temp. : 125 5 storage Test duration : 1000 hr. 2 Low temperature Storage temp. : -40 5 storage Test duration : 1000 hr. 3 Temperature Storage temp. : 85 2 humidity storage Relative humidity : 85 5% Test duration : 1000hr. 4 Unsaturated Test temp. : 120 2 pressure cooker Atmospheric pressure : 1.7x105 Pa : 85 5% Test humidity Test duration : 96 hr. 5 Temperature Test temp. : Minimum storage temp. -40 5 cycle Maximum storage temp. 125 5 Normal temp. 5 ~ 35 Dwell time : Tmin ~ TN ~ Tmax ~ TN 1hr. 0.5hr. 1hr. 0.5hr. Number of cycles : 100 cycles 6 Thermal shock +0 Test temp. : High temp. side 100 -5
+5
5 5
(1:0) (1:0)
Mechanical Tests
Test Method 404 Condition code B
5
(1:0)
Test Method 303 Condition code A
5
(1:0)
Test Method 302 Condition code A
5
(1:0)
Test Method 201 Test Method 202 Test Method 103 Test code C Test Method 103 Test code E
5 5 5
(1:0) (1:0) (1:0)
5
(1:0)
Environment Tests
Test Method 105
5
(1:0)
Test Method 307 method Condition code A
5
(1:0)
Fluid used Dipping time Transfer time Number of cycles
: : : :
Low temp. side 0 -0 Pure water (running water) 5 min. par each temp. 10 sec. 10 cycles
MS6M 0677
19 22
H04-004-03
a
a
Test categories Reference norms EIAJ ED-4701
Test Method 101
Test items
Test methods and conditions : Ta = 125 5 (Tj ) 150 : VC = 0.8xVCES : Applied DC voltage to C-E Vcc = 15V : 1000 hr. : 85 2 : 85 5 % : VC = 0.8xVCES Vcc = 15V : Applied DC voltage to C-E : 1000 hr. : 2 sec. : 18 sec. : Tj=100 5deg Tj , Ta=25 5 150 : 15000 cycles
AcceptNumber ance of sample number 5 (1:0)
Endurance Tests Tests Endurance
1 High temperature reverse bias
Test temp. Bias Voltage Bias Method Test duration Test temp. Relative humidity Bias Voltage Bias Method Test duration ON time OFF time Test temp. Number of cycles
2 Temperature humidity bias
Test Method 102 Condition code C
5
(1:0)
3 Intermitted operating life (Power cycle)
Test Method 106
5
(1:0)
19. Failure Criteria
Item Characteristic Symbol Failure criteria Unit Lower limit Upper limit USLx2 mA USLx1.2 V USLx1.2 V USLx1.2 /W USLx1.2 /W LSLx0.8 USLx1.2 LSLx0.8 USLx1.2 ms LSLx0.8 USLx1.2 Broken insulation The visual sample Note
Electrical Leakage current ICES characteristic Saturation voltage VCE(sat) Forward voltage VF Thermal IGBT th(j-c) resistance FWD th(j-c) Over Current Protection Ioc Alarm signal hold time tALM Over heating Protection TcOH Isolation voltage Viso Visual Visual inspection inspection Peeling Plating and the others
LSL : Lower specified limit. USL : Upper specified limit. Note : Each parameter measurement read-outs shall be made after stabilizing the components at room ambient for 2 hours minimum, 24 hours maximum after removal from the tests. And in case of the wetting tests, for example, moisture resistance tests, each component shall be made wipe or dry completely before the measurement.
MS6M 0677
20 22
H04-004-03
a
Warnings 1. This product shall be used within its absolute maximum rating (voltage, current, and temperature). This product may be broken in case of using beyond the ratings.

2. Connect adequate fuse or protector of circuit between three-phase line and this product to prevent the equipment from causing secondary destruction.

3. When studying the device at a normal turn-off action, make sure that working paths of the turn-off voltage and current are within the RBSOA specification. And ,when studying the device duty at a short-circuit current non-repetitive interruption, make sure that the paths are also within the avalanche proof(PAV) specification which is calculated from the snubber inductance, the IPM inner inductance and the turn-off current. In case of use of IGBT-IPM over these specifications, it might be possible to be broken.
RBSOA (PAV)
4. Use this product after realizing enough working on environment and considering of product's reliability life. This product may be broken before target life of the system in case of using beyond the product's reliability life.

5. If the product had been used in the environment with acid, organic matter, and corrosive gas (For example : hydrogen sulfide, sulfurous acid gas), the product's performance and appearance can not be ensured easily.

6. The thermal stress generated from rise and fall of Tj restricts the product lifetime. Y u h u et t t j o p w ross n t r leia c, n d s n h i et l t o so l sma h T f m o e l e a d h mars t e a d ei t n r ri i d i ee r s e sn g e v e f me e within the number of cycles provided from the power cycle curve. (Technical Rep. No.: MT6M4057)
T j (MT6M4057)
7. Never add mechanical stress to deform the main or control terminal. The deformed terminal may cause poor contact problem.

MS6M 0677
21 22
H04-004-03
a
8. Never add mechanical stress to deform the main or control terminal. The deformed terminal may cause poor contact problem.

9. If excessive static electricity is applied to the control terminals, the devices can be broken. Implement some countermeasures against static electricity.

Caution 1. Fuji Electric is constantly making every endeavor to improve the product quality and reliability. However, semiconductor products may rarely happen to fail or malfunction. To prevent accidents causing injury or death, damage to property like by fire, and other social damage resulted from a failure or malfunction of the Fuji Electric semiconductor products, take some measures to keep safety such as redundant design, spread-fire-preventive design, and malfunction-protective design.

2. The application examples described in this specification only explain typical ones that used the Fuji Electric products. This specification never ensure to enforce the industrial property and other rights, nor license the enforcement rights.

3. The product described in this specification is not designed nor made for being applied to the equipment or systems used under life-threatening situations. When you consider applying the product of this specification to particular used, such as vehicle-mounted units, shipboard equipment, aerospace equipment, medical devices, atomic control systems and submarine relaying equipment or systems, please apply after confirmation of this product to be satisfied about system construction and required reliability.

If there is any unclear matter in this specification, please contact Fuji Electric Co., Ltd.
MS6M 0677
22 22
H04-004-03
a


▲Up To Search▲   

 
Price & Availability of 6MBP150RTJ060

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X